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I. Specific Aims 
Small molecule kinase inhibitors have become a major focus of drug development for treating cancer, which 
accounted for 550,000 deaths and 1.5 million diagnoses in the United States in 2015 alone. Currently, there 
are 31 FDA approved kinase inhibitors. The dominant paradigm for designing such inhibitors has been to 
optimize maximally selective ligands for a single target. Unfortunately, many such inhibitors fail in clinical trials 
due to a lack of efficacy and clinical safety. Tumors can evade inhibitors through multiple routes of resistance, 
including upregulation of a second kinase, mutations in the target kinase or amplification of the target kinase. 
On the other hand, toxicity arises from on-target inhibition of the wild type kinase or off-target effects of 
promiscuous small molecules or their metabolites. ATP-competitive kinase inhibitors have great potential for 
promiscuity, as there are over 500 kinases in the human kinome that each binds a common substrate, ATP. 
These issues could be addressed through a different paradigm of drug development where small molecules 
are optimized for selectivity profiles that inhibit desired targets while avoiding binding to unwanted antitargets.  
 
A challenge facing this paradigm is the difficulty of rationally designing a single compound with desired 
affinities to multiple targets, which is currently a task of extraordinary difficulty for both medicinal and 
computational chemists. Recent advances in GPU-accelerated alchemical free energy calculations present an 
opportunity to use computation to both assess the potential to achieve this kind of chemical selectivity with 
kinase inhibitors and to build a tool to realize it through automated chemical design. We propose to extend a 
novel computational approach to search chemical space for small molecules that maximize binding affinities to 
specified positive targets and minimizes affinities for specified antitargets, to identify small molecules with 
desired selectivity profiles. We consider both a well-studied, experimentally tractable model system—Abl and 
Src—as well as clinically interesting cases such as EGFR and the HER family of kinases.  
 
Aim 1. Investigate the details necessary to quantitatively predict inhibitor selectivities. To assess the 
accuracy of GPU-accelerated alchemical free energy calculations for quantitative prediction of binding affinities 
and instruct which additional chemical details must be added, we will recapitulate experimentally measured 
free energies of binding to Src and Abl for a large subset of FDA-approved inhibitors. The Chodera lab has 
developed an expanded ensemble simulation utilizing nonequilibirum candidate Monte Carlo (NCMC), 
reversible jump Markov Chain Monte Carlo and stochastic approximation-based sampling to predict free 
energies of binding. If these calculations are not sufficiently accurate to be useful in designing for selectivity, 
additional details, such as protonation state, phosphorylation state, conformational reorganization or tautomeric 
state, can be added in a sequential manner and tested systematically within this framework.  
Aim 2. Analyze how multitargeted design constraints influence chemical space available to inhibitors. 
We will investigate how chemical space is narrowed depending on multiple design constraints, rationalizing the 
chemical features that might be driving the desired selectivity profiles. The above simulation technique will be 
extended to search through chemical space to find small molecules optimized to satisfy multiple positive and 
negative design constraints. As chemical space is very large, this process can be biased to only search 
synthetically accessible space, commercially available kinase-targeted libraries, and drug-like compounds. 
This algorithm will allow for the proposal of putative small molecules that could satisfy a specific selectivity 
profile, such as binding to EGFR but not HER2. We will test these predicted binders in the laboratory using 
biophysical binding assays and examine whether QSAR models are sufficient to rationalize the small molecule 
features that are important for a given selectivity.  
Aim 3. Evaluate the potential for mutant selective small molecule inhibitors On-target toxicity limits the 
dosage and effectiveness of drugs, while resistance mutations develop quickly in many patients, limiting the 
length of response to first line treatments. These issues could be addressed if inhibitors selective for oncogenic 
mutants could be developed. We will investigate whether small molecules can be sufficiently selective for the 
oncogenic mutant form of kinases, and how chemical space is narrowed by this constraint. We will use the 
above algorithm to target kinases with oncogenic mutations and antitarget wild type kinases, proposing 
libraries of molecules that target therapeutically relevant mutants. We will investigate these proposed binders 
using cheminformatics approaches to learn the features contributing to this selectivity.  
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II. Background and Significance 
Small Molecule Kinase inhibitors are an important area of drug development  
In 2015 alone, cancer accounted for 550,000 deaths and 1.5 million new diagnoses in the United States1. 
Since the FDA approval of imatinib in 2001, therapeutics targeting kinases now account for over 50% of current 
cancer drug discovery and close to 30% of total drug discovery efforts2, with 31 FDA approved small molecule 
kinase inhibitors (SMKIs) on the market3. However, there has been a decrease in productivity using current 
design strategies, with many drugs failing in late stage clinical trials. By the time a drug fails in Phase III, a 
typical pharmaceutical company has spent 12 years and almost $1 billion on development4. SMKIs can fail late 
in the development pipeline for two main reasons: safety issues or lack of efficacy. Tumors have multiple 
routes to resistance, including target amplification, effectively increasing the amount of drug required to get the 
same level of inhibition. Inhibitor resistance occurs through the presence or upregulation of a redundant 
pathway, mutation of the target kinase5, activation of downstream kinases6, or relief of feedback inhibition7. On-
target toxicity, from inhibition of wild type kinase, can cause efficacy issues by limiting the maximally tolerated 
dose (MTD). Safety issues arise from adverse events due off-target toxicity, such as geftinib inhibiting 
CYP2D68 and causing hepatotoxicity in lung cancer patients, or from the on-target toxicity of inhibiting the wild 
type kinase9,10.  
 
Kinase inhibitor selectivity can vary dramatically  
Each kinase inhibitor has a certain selectivity profile, or group of biological targets a molecule binds to 
and inhibits strongly enough to produce a phenotype. Kinase inhibitors have potential for a great diversity 
of selectivity---the number of targets a molecule binds to below a certain Kd

 threshold. There are 51811 
members of the human kinome, each with a highly similar, druggable ATP-binding site (Figure 1A) 12-16, giving 

inhibitors targeted to 
them huge potential for 
promiscuity, like 
staurosporine, which 
inhibits a large 
percentage of the 
kinome often  with very 
high Kd. (Figure 1B).  
Even FDA approved 
drugs have a wide 
range of selectivities 
(Figure 1B)17. In a 2011 

paper, Davis et al., 
characterized the 
interaction of 72 known 
kinase inhibitors against 
a panel of 442 kinases17 

using a competitive binding assay. Of the 72 compounds screened, 70% had a Kd < 3 μM for more than 10% 
of the 442 distinct kinases screened. While this study confirmed that type II inhibitors, SMKIs that bind an 
active site adjacent pocket exposed in the ‘DFG-out’ conformation, are more likely to be selective than Type I 
inhibitors, those that can bind to either the ‘DFG-out’ or ‘DFG-in’ conformation, it also found that there are 
several type II inhibitors that have low selectivity. Conversely, several Type I inhibitors exhibited a high level of 
selectivity. This suggests that either binding mode is a viable option when seeking to design a selective 
inhibitor. Additionally, 17 of the 72 compounds bound to fewer than 5 off-target kinases with affinity comparable 
to their primary target and also had a Kd < 3 μM for less than 10% of the assayed kinases. This suggests that it 
is possible to design compounds that are selective for multiple targets, a strategy that has been suggested as 
a possible design paradigm termed targeted polypharmacology6,18-20.  
 

Figure 1. Potential for diverse selectivity and selectivity profiles of SMKIs. (A) 
Crystal structure of Src (black) [12] and Abl (gray) [13] bound to imatinib, which have 
almost identical binding sites and poses, highlighting the challenge in achieving selectivity 
when targeting the ATP binding pocket. (B) Selectivity maps [12] highlight the wide range 
of selectivities SMKIs can have. Even drugs used in the clinic bind multiple kinases.  
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Multitarget drug design could address the limitations of current design strategies  
Current design efforts focus on achieving maximal selectivity for a single target by improving a weak inhibitor 
through analogue synthesis21, which is not always rational, or through structure-informed design21,22, which is 
difficult because kinases exist as nodes in complex signaling networks23,24, with feedback inhibition and 
pathway cross-talk complicating the relationship between binding and signaling. This complicates the notion of 
inhibiting a single kinase to shutdown a pathway, as alleviating negative feedback can lead to re-activation of 
the target pathway7,23, or lead to activation of a secondary pathway previously regulated by inhibitory cross-
talk23,25. Further, tumors can easily evade inhibition of a single target6 by mutating the target to ablate inhibitor 
binding; mutating downstream effectors to bypass the inhibited node in the pathway; up-regulating a redundant 
signaling pathway or branch; or up-regulating the target kinase to increase the amount of drug needed for 
efficacious inhibition to occur.   Instead, it may be possible to address some of the challenges of SMKI 
development by using multiple targets as design constraints. This design paradigm could improve selectivity by 
antitargeting kinases closely related to the desired therapeutic target, such as positively designing an inhibitor 
for EGFR while antitargeting HER2. Multitarget design could also reduce on-target toxicity, thereby improving 
the therapeutic window, by targeting the oncogenic mutated kinase and antitargeting the wild type kinase. This 
could improve upon the success of certain EGFR inhibitors such as gefitinib and erlotinib26-28 or aid the 
development of second generation inhibitors for use in treating patients with clinically-acquired resistance 
mutations, such as the ALK inhibitor alectinib29. Additionally, designing inhibitors with desired selectivity 
profiles could be leveraged to target multiple kinases30,31. For example, recent work24 suggests that combined 
EGFR and MEK inhibition prevents the emergence of drug resistance, potentially prolonging treatment for 
EGFR-mutant non-small cell lung cancer patients. This presents an opportunity to harness the promiscuity of 
SMKIs to develop a molecule that could inhibit both EGFR and MEK. A single multitarget drug might be 
preferable on practical terms, by avoiding the expense of developing multiple novel molecular entities. 
However, it is unknown if multitarget design strategies limit chemical space so severely that it becomes 
impossible to identify small molecules that satisfy the constraints.   
 
Alchemical free energy calculations can be used to predict binding affinities  
Virtual screening, a commonly used computational tool to aid rational drug design32, focuses on enrichment33 of 
potential binders after screening large libraries of compounds. While in widespread use, this approach is not 
true rational design, as 
docking scoring 
functions do not 
correlate with ligand 
binding affinity34. To 
achieve computational 
efficiency, virtual 
screening makes a 
number of 
approximations, such 
as averaging over 
ligand binding modes or 
receptor rigidity that 
lead to inaccuracies in 
predicting binding 
affinities. On the other 
hand, free energy 
calculations35 offer a 
promising route to 
efficiently calculate 
the free energy of Figure 2. Free energy calculation scheme and equations. (A) Thermodynamic cycle of 

binding. (B) Equations and theory behind PERSES algorithm (C) Illustration of how alchemical 
intermediates turn off electrostatic and van der waals interactions to decouple the ligand.  
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binding, which is related to the dissociation constant (Figure 2B, equation [1]) as shown in Figure 2B, 
equation [2]. In theory, the free energy of binding could be estimated by simulating multiple binding and 
unbinding events for a given drug:receptor pairing. However, unbinding is very slow, on the order of hours for 
typical drugs, which would take ~106 years to simulate. Since free energy is a state function and independent 
of the pathway taken, we can use an alternative pathway (Figure 2A, blue arrows) of alchemical 
intermediates (Figure 2C) in which the ligand interactions are gradually turned off or ‘decoupled’, allowing for a 
more efficient calculation of the free energy of binding. From statistical mechanics, we can relate the free 
energy of binding to partition functions (Figure 2B, equation [3]), which are quantities that relate the atomistic 
details of our simulations to the thermodynamic properties we are interested in. Using simulation, we are able 
to estimate ratios of partition functions, which will be proportional to the affinities we are interested in (Figure	
  
2B, equation [4]). 
 
Using this framework, we have developed a simulation scheme (Figure 3) where we use the expanded 
ensemble method to sample from a joint state space (Figure 2B, equation [5]) containing a flexible receptor 
and solvent system x; and a compound, indexed at k. This system is sampled from using Markov chain Monte 
Carlo (MCMC) (Figure 3A), which propagates the coordinates of the system, x. Over the course of the 
simulation, changes to the chemical identity of the ligand are proposed using reversible jump Markov chain 
Monte Carlo (RJMCMC)36 (Figure 3B), which allows for changing degrees of freedom as the number of atoms 
in the ligand changes. Nonequilibirum candidate Monte Carlo (NCMC)37, a technique based on nonequilibirum 
statistical mechanics that 
allows the acceptance 
probabilities of Monte Carlo 
moves to be exponentially 
enhanced, is used to 
enhance acceptance rates 
during Monte Carlo 
transitions from the original 
ligand, indexed at k, and the 
newly proposed ligand, k+1 
(Figure 3C). Over the course 
of the simulation, self-
adjusted mixture sampling 
(SAMS) is used to adjust the 
logarithmic bias, gk, of the 
joint state space so that the 
marginal distribution for 
compound k (Figure 2B, 
equation [6]) is proportional 
to the binding affinity of the 
ligand for the receptor 
(Figure 3D). To 
accommodate multitarget 
drug design, multiple coupled 
simulations can be run 
simultaneously, such that 
instead of a single affinity, 
the simulation will actually 
predict the product of 
affinities for two different 
proteins (Figure 2B, 
equation [7]), in the case of designing a dual target inhibitor. This simulation scheme is flexible and can be 

Figure 3. PERSES simulation scheme. (A) MCMC propagates the 
coordinates of system x (B) RJMCMC proposes new chemical species (C) 
NCMC smooths transition between ligands k and k+1 to increase 
acceptance rates (D) SAMS recursively updates the logarithmic bias so that 
the marginal distribution is proportional to the free energy of binding  
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adapted for both positive and negative design. Ultimately, these simulations will output a collection of ligands 
and their relative free energies of binding, allowing for the prioritization of molecules that are predicted to be 
better binders than others. Additional extensions can be made to calculate absolute free energies, which can 
be directly compared with biophysical binding measurements. The chemical space from which ligand proposals 
are drawn can be biased in a number of ways. For example, chemical space can be limited to a well-curated 
library of kinase inhibitors or expanded to include all commercially available molecules.  
 
Src and Abl are a well-understood test system for validating the prediction of affinities and selectivities 
The initial success of Imatinib38, an inhibitor designed to target  BCR-Abl and the Abl subfamily of kinases, in 
treating chronic myeloid leukemia (CML) spurred much initial hope in developing SMKIs for other cancers39. 
Imatinib binds to Abl with about 3,000 times the affinity it binds to Src, its closest relative13,40. The difference in 
affinity was originally attributed to the inability of Src to adopt an imatinib-bound state41,42. Surprisingly, a crystal 
structure was solved showing that Src can adopt an Abl-like conformation and bind imatinib with an almost 
identical pose13, while Abl was shown to adopt a Src-like inactive conformation43. Subsequent work has 
involved extensive NMR44,45, molecular dynamics46-48, and biochemical49 characterization of the two kinases 
with the intent of explaining this difference in binding affinity, which would help inform the design of selective 
inhibitors. This wealth of crystallographic50 and biochemical data, known targeted inhibitors3,51-54, and ability to 
express the proteins in bacteria55 make Src and Abl ideal to use as a model system.  
 
EGFR is a clinically interesting test case for rational drug design  
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase, a member of the ErbB family along with 
HER2, HER3 and HER4, which transduces mitogenic signals across the plasma membrane and are often 
deregulated in human cancers56. As a monomer, EGFR adopts a Src-like autoinhibited inactive state57. Upon 
binding of an extracellular ligand, such as EGF or TGFα, EGFR forms hetero- or homo- dimers with other 
members of the ErbB family, including pseudokinase HER326,58. These dimers adopt an asymmetric, head-to-
tail conformation in which one kinase domain stabilizes the active conformation of the second59,60 through a 
highly hydrophobic interface, which can be disrupted by missense mutations at the interface59,61,62. EGFR 
mutations are present in as much as 26% of NSCLC patients63. One-third of all cancer deaths worldwide are 
caused by lung cancer64,65 and as many as 80% of all lung cancer patients have NSCLC65-67. The most 
common alterations are a small in-frame deletion in exon 19 and missense mutation L858R65, which spurred 
the development of successful first generation and second inhibitors68 such as erlotinib69,70, lapatinib71, and 
gefitinib70,72,73. Extensive structural and biochemical studies have been performed on L858R27, which was 
found to adopt an active conformation similar to the wild type protein and have a Kcat 50 fold higher27 than wild 
type EGFR. This mutant is proposed to activate EGFR by increasing dimerization affinity, thereby shifting the 
population dynamics of EGFR toward the active state74. Both gefitinib and erlotinib have been shown to be 
selective for this mutant over the wild type kinase70,75 and growing evidence suggests that these drugs can bind 
both the active and inactive forms of the kinase, with varying affinities59,76. As such, it is possible that 
differences in the measured affinities, which are a cumulative average of the drug’s affinity for each individual 
kinase conformation, are reflective of a shift in the proportion of the kinase populating the active state for 
L858R.  However, most patients develop resistance to these inhibitors within 9 to 14 months63,77, through 
resistance mutations (T790M, 60%)5,28, activation of secondary kinases (MET78, FGFRs79) or alterations 
downstream of EGFR that reactivate ERK signaling24,80. The mechanism of T790M resistance remains unclear, 
but it has been suggested to act through increasing affinity for ATP in the L858R double-mutants81. Other work 
suggests that T790M introduces steric hindrance that impedes inhibitor binding82. To address resistance, a 
number of successor inhibitors are in development to target the T790M mutation66. This system provides a 
clinically interesting case that can be served by mutant-specific drugs that target either an oncogenic or 
resistance mutant more specifically than the WT form of the kinase, as well as a small family within which 
multitargeted inhibitors, such as lapatinib, would be beneficial.    
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III. Preliminary Data 

 
To aid in the automated high-
throughput expression of 
recombinant human kinases for 
biophysical binding assays, the lab 
built a structural informatics 
pipeline55 to select domain targets 
from constructs deposited in the 
PDB that were expressed in E. coli. 
This lead to the identification of 96 
kinase domain constructs that were 

cloned into 2BT10 plasmids that 
contained N-terminal His10-TEV 
tags and coexpressed with Lambda 

phosphatase (for Ser/Thr kinases) or YopH (for Tyr kinases). These constructs were expressed at the QB3 
Macrolab at UC Berkeley in Rosetta2 cells in a 96 well plate in 1mL cultures and purified using Ni-NTA resin in 
a 96-well plate. Protein yields and purity were determined using LabChip GX II, a microfluidic gel 
electrophoresis system. As in Figure 3, both Src and Abl expressed well and are expected to yield more than 
2mg/L when scaled up. This high-throughput and automated protocol will enable rapid production of human 
kinase for use in biophysical binding experiments.  
 
To generate high quality binding data to compare calculations to experiment, the lab has developed a high-
throughput 96-well plate version of a previously reported cuvette-based fluorescence binding assay83. Figure 
4A highlights the direct binding version of this assay, using well-characterized inhibitors, such as gefitinib and 
bosutinib, as fluorescent probes. By titrating the amount of probe, exciting at 280nm and measuring emission 
at 480nm, Bayesian analysis can be used to accurately determine ligand binding affinities. Non-fluorescent 
ligands, such as imatinib, can be accessed by using the competitive version of this assay (Figure 4B), which 
allows for the characterization of most ATP-competitive inhibitors.  
 

Figure 3. Expression Results by kinase. A selection of kinases showing 
yield and co-expressed phosphatase. Highlighted in red are Src and Abl.  

Figure 4. Automated fluorescence assay for label-free measuring of kinase inhibitor binding affinities. (A) Left: 
Gefitinib (quinazoline scaffold) and bosutinib (quinolone scaffold) are two of many fluorescent probes that can be used. 
Right: Fluorescence emission spectra (excitation 280nm) for a wide range of probe concentrations show increase in 
fluorescence upon binding. Dashed line at 480nm indicates emission wavelength.  (B) Competition assay using gefitinib 
as a fluorescent probe to measure affinities for non-fluorescent inhibitors like imatinib. Solid lines indicate the presence of 
Abl while dashed lines are the molecules alone.  
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IV. Research Design  
 
Aim 1. Investigate the details necessary to quantitatively predict inhibitor selectivities 
 
Rationale and significance 
In order to rationally design small molecules using free energy calculations, we must first assess the current 
predictive accuracy. What level of detail is required to be accurate enough to impact drug design? An accuracy 
of less than 2 kcal/mol error is estimated to speed up lead optimization three-fold over traditional medicinal 
chemistry when only potency optimization is considered84. Current methods operate at the molecular 
mechanics level of detail, with entropy, enthalpy, and conformational flexibility accounted for. However, a 
number of phenomena are not explicitly considered by the calculation, such as conformational reorganization 
in kinases; protonation state of both the kinase and the inhibitor; and phosphorylation of the kinase. Should our 
calculations not reach a useful accuracy threshold as is, we can systematically add details to test if they are 
required. To do so, we will first use a GPU-accelerated alchemical free energy calculation to estimate the 
relative free energy of binding of a small set of known kinase inhibitors for Src and Abl. We will then compare 
the results to biophysical experiments, to gauge the accuracy of our predictions. Using medicinal chemistry 
data from Abbott84, we can build a statistical model of medicinal chemists making changes to improve 
selectivity and affinity, allowing us to determine the utility of our tool based on its accuracy. This will allow us to 
assess the current calculations and provides a framework to systematically test which details must be added to 
achieve a useful level of accuracy.  
 
Experimental approaches 
 
Free energy calculations will predict known inhibitor binding affinities 
We have developed an algorithm that utilizes MCMC, RJMCMC, NCMC, and SAMS to estimate the relative 
free energies of binding for ligands using GPU-accelerated simulations. These calculations, using a molecular 
mechanics forcefield (e.g. AMBER99SB-ILDN85), will use a GPU computing cluster at MSKCC. Such 
alchemical free energy calculations are able to rigorously compute binding affinities to individual 
conformations86-90. This particular approach works by using NCMC to smooth the transition between a series of 
alchemical intermediates in which the ligand is morphed into a new chemical species. To calculate a relative 
free energy that includes all relevant statistical mechanical effects, parts of the ligand that are modified are 
gradually ‘decoupled’ and morphed into a new chemical species before being ‘recoupled’. To test the accuracy 
of our calculations, Src and Abl will be used as a model system. The free energy calculations will be run using 
non-covalent FDA-approved SMKIs51 as the chemical library through which the algorithm searches. This small 
group will serve as a useful benchmark to test the free energy calculations on, with a dynamic range of 
selectivities spanning from nM to mM.  
 
Comparing calculation to experiment 
In order to determine the accuracy of these calculations, it is important to compare in silico work to 
experimental data. While there is a large amount of publically available affinity data17,91, much of the data is 
poorly curated, improperly treated statistically, or from indirect binding assays with varying conditions that 
impact measured affinities92-94. As such, we will collect our own high-quality set of affinity measurements for 
non-covalent FDA-approved SMKIs to use as a validation set utilizing a high-throughput direct fluorescence 
readout of binding to recombinantly expressed kinases. First, we will express soluble Src and Abl kinase 
domains in a high-throughput 96-well, automated fashion. The kinase domains will be cloned into 2BT10 
plasmids with an N-terminal His10-TEV cleavable tag and coexpressed with YopH164, a phosphatase that 
increases expression levels and ensures the kinase remains unphosphorylated95. Construct boundaries were 
identified from the PDB and previous work55. These constructs will be expressed in E. coli, which is superior to 
insect cells in terms of cost and convenience compared. Purification will be done using Ni-NTA beads and after 
tag-cleavage with TEV protease, purity can be assessed using microfluidic gel electrophoresis using a LabChip 
GX II (Caliper LifeSciences). Phosphorylation state will be confirmed by mass spectrometry. 
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With the recombinantly expressed kinases, we will use a high-throughput fluorescence assay to measure Src 
and Abl kinase inhibitor binding affinities. Quinazoline and quinolone scaffold-based ATP-competitive inhibitors 
greatly increase in fluorescence upon binding kinase83, providing a label-free and kinase-activity independent 
method to measure kinase inhibitor affinities. This method can be used to directly measure affinities for 
fluorescent drugs or for non-fluorescent drugs via competition with fluorescent drug probes. This biophysical 
experiment takes advantage of the fact that all available ATP-competitive inhibitors will bind to every kinase 
with varying affinities96,97. This assay has several advantages over other methods, requiring only micrograms of 
protein for a direct binding measurement over a wide range (nM-mM) of affinities. The assay works as a single-
wavelength fluorescence measurement with excitation at 280 nm and emission at 480nm, for which Bayesian 
analysis allows for the accurate determination of inhibitor affinity and its confidence interval, using code 
developed within the Chodera lab98. As a negative control for the direct binding assay, we will use inhibitor in 
solution without kinase, which will demonstrate that the increase in fluorescence is dependent on binding to the 
protein and not a function of increasing concentration. The negative controls for the competition assay are the 
fluorescent probe both alone and with the non-fluorescent ligand of interest in solution without protein. The first 
control is to show that there is no concentration-dependent increase in fluorescence. The control with both 
inhibitors demonstrates that the shift in the fluorescence curve is due to the fluorescent probe competing with 
the non-fluorescent ligand to bind the kinase, and not due to an interaction between the two small molecules.  
 
Possible outcomes and alternative approaches 
Using data from Abbott medicinal chemists, we can construct a statistical model that will estimate the utility of 
our tools for a given level of accuracy. If the current methods are sufficiently accurate for rational design, we 
can move to a kinase inhibitor targeted library of a few thousand compounds. Importantly, this library would not 
require the expensive synthesis of large numbers of compounds to test in the lab. If the calculations do not 
reach the desired accuracy, a number of details can be added and tested in a systematic manner. 
Discrepancies between the predicted and measured affinities can be attributed to three main sources: (1) 
missing conformational states of the protein; (2) incomplete treatment of chemical effects such as protonation 
state changes in the protein99 or ligand100, or tautomerization101; and (3) deficiencies in the forcefield. Should 
conformational reorganization or multiple conformations that do not quickly interchange be a required detail, we 
can run multiple coupled simulations, each one starting with a different conformation of the same kinase. The 
same schema can be used if multiple phosphorylation states must be accounted for in predicting binding 
affinity. If ligand protonation state is important, constant-pH methodologies102 currently under investigation in 
the Chodera lab can be incorporated into PERSES. With the high-quality data set generated from the 
fluorescence-based assay, it will be possible to rigorously test which of these potential solutions will bring the 
error to an acceptable margin. Alternatively, if it is not possible to reach the desired level of accuracy, the free 
energies can be useful as qualitative scores to rank molecules, in a fashion similar to docking scores. This 
would still represent an improvement as multiple ligand binding poses and protein conformations are 
considered. This process would also inform future development efforts by exploring which details are required 
to approach quantitative accuracy, something that as yet has not been rigorously tested in this framework 
 
The fluorescence assay is limited in the range of affinities it can measure at the low end by the minimal 
detectable fluorescence and at the high end by the solubility limit of the fluorescent probes (about 50μM). 
Should this range be insufficient for a given kinase model system, multiple probes can be used to extend this 
range.  If an unbound inhibitor absorbs the emission band of the kinase:probe complex, causing fluorescence 
interference, we can either monitor emission at multiple wavelengths or chose a different fluorescent probe 
with a different emission wavelength. As kinase phosphorylation state is important for some inhibitors such as 
bosutinib, we can allow the kinase to autophosphorylate103 at high concentration and confirm phosphorylation 
state with mass spectrometry. Alternatively, we could incubate the kinases with Hck kinase domain83. 
Isothermal titration calorimetry (ITC) 104,105 is a commonly used alternative method. While is possible to use as 
an alternative to the fluorescence assay, it is not high-throughput and consumes large amounts of protein. This 
method is also limited by the solubility of the small molecules.  
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Aim 2. Analyze how multitargeted design constraints influence chemical space available to inhibitors. 
 
Rationale and significance 
The feasibility of multitarget drug design depends on how multiple constraints narrow the chemical space 
available to a small molecule that satisfy the criteria, making small molecule discovery difficult or limiting us to 
less drug-like molecules that have undesirable physical properties. We can test this by running calculations 
with multiple constraints and rationalizing the molecular features that drive the desired selectivity. Using 
multiple positive targets as constraints to search through a kinase-targeted inhibitor library, we can propose 
dual-target inhibitors, such as lapatinib57,106 which targets both EGFR and HER2 and is highly selective 
compared to the other FDA-approved SMKIs17,91. This design strategy may prove useful in designing inhibitors 
for EGFR and MEK, which would be useful in prolonging response to SMKIs in non-small cell lung cancer24. 
We can also seek to improve selectivity within a family of kinases by positively targeting one kinase and 
antitargeting the others. This would be useful for creating molecules selective for a single member of the ErbB 
family, while minimizing its affinity for the other ErbB kinases. This approach can also be adapted for the 
purposes of designing Type I or Type II inhibitors, which differ on whether they bind to the DFG-in or DFG-out 
conformation of a kinase51,107, by using multiple conformations of a single kinase as design constraints. We will 
use alchemical free energy calculations to propose libraries of molecules that meet a desired selectivity profile 
and analyze them to identify potential new fragments or scaffolds that drive such selectivity using 
cheminformatics techniques. This methodology will also allow us to potentially identify new binding modes or 
poses that could facilitate achieving the desired selectivity.  
 
Experimental approaches 
 
Free energy calculations using multitarget design constraints 
To utilize multiple design constraints, the alchemical free energy calculations will be expanded to use multiple 
coupled simulations, each seeded with a different kinase structure as a design constraint. These simulations 
will be coupled by the SAMS re-weighting step, which adjusts the logarithmic bias, gk, (Figure 2B, eqn. [5]). 
To maximize binding affinity to both targets, we will adopt an expanded objective such as Figure 2B, eqn. [7]. 
By searching chemical space to maximize this objective, we will propose and rank molecules based on the 
product of ligand binding affinities for both targets. Maximizing the ratio of binding affinities for each 
target would minimize binding affinity for the antitarget while maximizing the affinity for the positive design 
target. Using this scheme, we will perform three different calculations: targeting both EGFR and HER2, 
targeting EGFR and antitargeting HER2, antitargeting EGFR and targeting HER2. These calculations will be 
run on MSKCC’s GPU cluster using the AMBER99SB-ILDN forcefield and the kinase inhibitor library KINA 
(ChemBridge Research Labs), which contains 3200 compounds available through the RNAi/HTSC core at 
MSKCC. These simulations will output three libraries of molecules proposed based on each of the three 
different selectivity profiles. 
 
Validate proposed libraries using fluorescence-based assays  
We will validate our predictions by selecting a subset of molecules to measure binding affinities experimentally. 
To determine whether to use the direct or competition assay, we will perform a full spectrum analysis using Src 
and Abl binding. The concentration of each molecule will be varied between 8nM and 20uM, both with and 
without kinase. We will use a known fluorescent molecule as a positive control to ensure that fluorescence is 
being detected. The negative control for each new compound will be the series of spectra collected without 
kinase present, which will tell us whether any changes in fluorescence or dependent on ligand binding to 
protein. These experiments will determine whether we use a direct or competition based assay, as described in 
Aim 1, for each of the molecules we chose to validate. These binding affinity assays will use recombinantly 
expressed wild type EGFR and HER2 kinase domains, which were used in the alchemical free energy 
calculations that proposed these molecules. We will express soluble EGFR and HER2 in a high-throughput 96-
well, automated fashion. The kinase domains will be expressed using 2BT10 plasmids with an N-terminal 
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His10-TEV cleavable tag and coexpressed with YopH164 phosphatase. These kinases will be expressed in E. 
coli and purified using Ni-NTA beads. After tag-cleavage with TEV protease, purity can be assessed using 
microfluidic gel electrophoresis using a LabChip GX II (Caliper LifeSciences). The small molecules can be 
obtained by request from the RNAi core at MSKCC and will not require extensive synthesis.  
 
Test whether linear additive QSAR can rationalize selectivity   
Cheminformatics108-111 tools provide a powerful method to analyze the physical determinants driving each 
selectivity profile. Each of the molecules in the proposed library will be encoded with affinity data from the 
alchemical free energy calculations. We will then generate radial molecular fingerprints112, which are 
representations of the connectivity of a compound in 32-bit form. These fingerprints are topological descriptors 
and depend only on the 2D structure of the chemical. Using these fingerprints, we will generate predictive 
linear additive 2D quantitative structure-activity relationship (QSAR) models using the direct kernel-based 
Partial Least Squares (KPLS) 113,114 supervised learning algorithm implemented in Canvas (Schrodinger) 115,116. 
These models will be generated using a training set randomly selected from the proposed libraries, while the 
rest of the library will form the test set. The model will be assessed on its ability to recapitulate the affinities of 
the test set molecules. A bootstrapping scheme will be employed to get an estimate of the variability of the 
model based on how the test set is drawn, by randomly sampling members from the training set, building a 
model and predicting the activity of a molecule in the test set. Test set molecules with features that correspond 
to highly variable parameters and change depending on how test set is drawn will be predicted with high 
uncertainty. Assessing QSAR models in this manner is critical to ensuring that the features important in the 
model are not artifacts of the training set selection process. Another important feature of this methodology is 
that the contributions of individual atoms to the model can be mapped backed on to the molecules. This allows 
for easy interpretation of the model and enables identification of scaffolds or fragments that are important for 
driving selectivity.  
 
Possible outcomes and alternative approaches 
Based on preliminary work with the algorithm, we expect that we will be able to search through a library of 
3200 compounds and proposed libraries that satisfy each of the design constraints. KPLS is effective at 
creating models using a small number of molecules113, and if the contributions to selectivity are linear, it should 
be possible to generate statistically meaningful models using this size library. These QSAR models can help 
identify fragments or scaffolds that are important for driving selectivity. Additionally, we will have a number of 
proposed good binders based on each selectivity profile and can prioritize interesting hits for future 
optimization.  
 
A kinase-targeted library covers only a small subset of chemical space and there may be significant overlap 
between the molecules proposed for each design constraint. If this happens, it will be difficult to create 
predictive models that can discriminate between features important to the different selectivity profiles. Further, 
it is possible that the design constraints severely restrict chemical space and only a small number of 
molecules, if any, are capable of satisfying them. To address this, we can use a larger library of molecules, 
such as eMolecules, which will allow us to sample a larger subset of chemical space while still allowing us to 
purchase molecules for experimental work. In addition to increasing the length of time it would take to 
adequately sample the chemical space of the library, large sets of compounds have the potential to have 
multiple clusters of chemicals that are difficult to sample between or contain molecules that are not drug-like 
and have unfavorable pharmacodynamics and pharmacokinetic properties. As an alternative, we could 
generate a virtual fragment-based library117, which would provide a large sample of chemical space that is 
expected to be drug-like. However, molecules proposed from this library would be difficult to test 
experimentally, as they would likely require synthesis.   
 
While Src and Abl are easily expressed in bacteria, EGFR has low bacterial expression55 and HER2 has only 
been expressed in insect cells. To recombinantly express these proteins, we will try a number of solubility 
promoting tags118 and search for new construct domains that might promote bacterial expression119. Because 
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the fluorescence assays are not dependent on kinase activity, we can use site-directed mutagenesis to 
introduce point mutations to inactivate the kinases, which has been shown to increase bacterial yields120. 
Additionally, both EGFR and HER2 kinase domains are commercially available from a number of sources, 
such as Carna Biosciences, and can be purchased to facilitate these studies.  
 
There are a number of alternative methods for developing QSAR models. While radial fingerprints for 2D 
models are in common use in the field, studies have shown that dendritic fingerprints are a viable alternative 
for use with KPLS121,122 and can easily be tried alongside radial fingerprints. Should 2D QSAR models prove 
unable to rationalize the determinants of selectivity, failure can be attributed to not taking into account the 3D 
shape of the ligands, or the presence of large numbers of stereoisomers in the dataset. In topological 
fingerprints, stereoisomers appear identical, but may have drastically different activities. These so called 
activity cliffs123,124, where molecules look similar but have very different activities, pose problems in developing 
quality QSAR models.  Stereoisomers can be addressed by either hand-curating these datasets to remove 
them or using 3D pharmacophores125 instead of 2D fingerprints. 2D fingerprints are typically considered 
superior because they do not require generating 3D structures or ligand alignment, which introduces a 
significant bottleneck to the QSAR workflow for large numbers of molecules. Activity cliffs resulting from non-
stereoisomer pairs are more difficult to address, but techniques such as MODI124 can be employed to a priori 
calculate whether there are too many activity cliffs in a data set to generate a QSAR model. A drawback of this 
method is the need to classify activity data, which is quantitative, into a categorical format. There are also a 
number of more advanced methods that can be used to develop QSAR models, such as 4D QSAR126,127. 
However, these methods generally use noninterpretable descriptors making them difficult to use to rationalize 
the feature driving selectivity. Further, it is also possible that the contributions to selectivity are inherently not 
linear additive, in which case QSAR models will be insufficient to predict measured selectivity. In this case, we 
learned about the nonadditivity of these contributions and have an alchemical free energy tool that can address 
such nonadditive contributions.   
 
Aim 3. Evaluate the potential for mutant selective small molecule inhibitors  
 
Rationale and significance 
EGFR-targeted inhibitors are typically given in non-small cell lung cancer patients to target the activated, 
mutated form of the kinase. While inhibitors like gefitinib and erlotinib have been shown to be selective for the 
mutant type over the wild type, they still bind to the wild type kinase with high affinity. Inhibiting the wild type 
pathway in non-cancer cells can cause on-target toxicity with deleterious side effects in patients, which limits 
the amount of inhibitor that can be safely given to a patient. In non-small cell lung cancer, EGFR inhibitors 
have been associated with skin rash128-131, diarrhea132, and ocular adverse events133 that have been attributed 
to inhibition of wild type EGFR. These adverse events, while not lethal, often lead to interruption of dose-
modification for these patients. Further, patients treated with EGFR inhibitors develop drug resistance in 9-14 
months63,77, most commonly with a secondary missense mutation, T790M5,134. While the mechanism of this 
mutation is not entirely clear, it has been shown to increase the ATP affinity of L858R-mutant EGFR but not in 
the context of wild type kinase. This mutant has also been proposed to introduce a steric clash that prevents 
inhibitor binding, similar to the Src T315I gatekeeper mutation, which has been suggested to both stabilize the 
active conformation as well as sterically interfere with inhibitor binding135,136. A second generation of inhibitors, 
while initially effective in treating EGFR SMKI-resistance patients, was unsuccessful due to dose-related, on-
target toxicities66. As such, new generations of drugs that target both L858R and L858R/T790M mutant EGFR 
but not the wild type kinase are required. Using the multitarget design scheme developed in Aim 2, we will 
begin to ask whether chemical space allows for molecules that satisfy these criteria.  
 
Experimental approaches 
 
Free energy calculations to propose mutant selective small molecules 
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To determine whether mutant selectivity is achievable using multitarget design constraints, we will use the 
alchemical free energy calculations developed in Aim 2 to propose libraries of small molecules. We will run a 
series of alchemical free energy calculations using mutant EGFR (L858R or L858R/T790M) as a positive 
design constraint and wild type EGFR as a negative design constraint. The calculations will be run using the 
GPU computing cluster at MSKCC, using a forcefield such as AMBER99SB-ILDN. We will use a commercially 
available compound database, such as eMolecules. These alchemical free energy calculations will search 
chemical space to maximize the ratio of ligand affinity for mutant EGFR over ligand affinity for wild type 
EGFR, and output libraries of molecules proposed to be more selective for the mutant form over the wild type 
kinase.  
 
Experimentally test free energy predictions  
To ensure that the predictions are accurate, we will assess several of the proposed small molecules using a 
biophysical fluorescence based binding assay to measure affinities for wild type and mutant EGFR. First, we 
will determine whether these molecules are fluorescent or not by performing a full spectrum analysis using Src 
and Abl binding. The concentration of each compound will be varied between 8nM and 20uM, both with and 
without Src or Abl, using a known fluorescent molecule as a positive control to ensure that fluorescence is 
being read. The negative control for each new compound will be the series of spectra collected without kinase, 
showing that any observed changes are dependent on the ligand binding to the protein are not a function of 
increasing concentration. These experiments will determine whether we use a direct or competition based 
assay, as described in Aim 1, for each of the molecules we chose to validate. We will recombinantly express 
wild type EGFR, L858R mutant and L858R/T790M mutant kinase domains for using in the binding assays. 
Both EGFR mutants will be generated using QuickChange Site-direct mutagenesis (Agilent) and expressed in 
bacteria with an N-terminal His10-TEV cleavable tag with coexpressed YopH164. Purification will be done 
using Ni-NTA beads and purity will be assessed after tag-cleavage with TEV protease via microfluidic gel 
electrophoresis using a LabChip GX II (Caliper LifeSciences).  
 
Analyze libraries for features driving selectivity 
To rationalize the features of the small molecules contributing to the desired selectivity profile, we will use 
cheminformatics tools to build predictive QSAR models. Using radial molecular fingerprints, which are 
representations of the connectivity of a compound in 32-bit form, we will create 2D QSAR models using the 
direct kernel-based Partial Least Squares (KPLS) supervised learning algorithm, implemented in Canvas 
(Schrodinger). A training set will be randomly drawn from the proposed libraries, with the rest of the molecules 
forming the test set. The validity of the QSAR model will be measured using a bootstrapping method, where 
multiple models are created by randomly drawing from the training set and used to predict the activity of 
molecules in the test set. This will identify features in the model that are highly dependent on how the test set is 
drawn.  Once a valid QSAR model is developed, the contributions of each atom will be mapped back onto each 
chemical in the library. Visualizing these contributions will allow us to identify scaffolds and modifications that 
favorably contribute to mutant selectivity.  
 
Possible outcomes and alternative approaches 
We expect to be able to predict a number of compounds that are mutant-selective, both for the L858R and 
L858R/T790M mutants, compared to the wild type. We also expect to be able to build a statistically valid QSAR 
model that will rationalize the physical determinants of mutant selectivity. However, it is possible that the 
design constraints narrow chemical space extensively and a larger library is needed. To address this, we can 
use a combinatorial or synthetically accessible library. These libraries, while covering a much larger subset of 
chemical space, can contain molecules that are difficult to obtain or synthesize. Such molecules would be 
difficult to experimentally validate. Additionally, many molecules would not be drug-like or feasible for use due 
to difficulty to synthesize.  
 
As stated in Aim 2, wild type EGFR does have low bacterial expression55 and the mutant forms have only been 
expressed in insect cells. To increase bacterial expression of these proteins, we will try a number of solubility 
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promoting tags118 or search for new construct domains119. Since the fluorescence assays are independent of 
kinase activity, we can inactivate the kinase using site-directed mutagenesis to increase bacterial yields120. 
Additionally, both EGFR and the mutants of interest are commercially available from a number of sources, 
such as Carna Biosciences, and can be purchased to facilitate these studies if bacterial expression is 
intractable.  
 
Should the proposed 2D QSAR models be unable to rationalize the differences in selectivity, we will move to 
3D pharmacophores125, which contain information about the 3D shape of a ligand. While 2D fingerprints are 
typically considered superior because their use does not require the generation of 3D structures or ligand 
alignment, 3D pharmacophores have had success in limiting the effect of activity cliffs. There are also a 
number of more advanced methods that can be used to develop QSAR models, such as 4D QSAR126,127. 
However, these methods often use noninterpretable descriptors, making rationalizing chemical features driving 
selectivity difficult.  
 
V. Conclusion 
Since the approval of imatinib in 2001, there has been a great deal of interest and research into developing 
small molecule inhibitors of kinases to treat cancer. Despite this, the pharmaceutical industry has seen a 
downturn in productivity, as many molecules fail in late stage clinical trials due to safety and efficacy issues. 
Tumors have multiple routes of resistance, including upregulation of a second kinase, mutations in the target 
kinase or amplification of the target kinase. On the other hand, toxicity arising from on-target inhibition of the 
wild type kinase can limit maximal tolerated dosage and reduce the effectiveness of the drug. Such issues 
might be addressed by designing drugs to maximize binding affinity for targets and minimizing binding for 
antitargets. In this study, we propose using GPU-accelerated alchemical free energy calculations to both 
assess the potential for achieving this kind of chemical selectivity with kinase inhibitors and to build a tool to 
realize it through automated chemical design. We first aim to investigate the accuracy of these calculations as 
quantitative predictors of binding affinity, and assess what chemical phenomena must be considered to 
achieve utility for rational drug design. We will then extend these alchemical free energy calculations to 
multitarget design, where we will assess the affect of multiple design constraints on the chemical space 
available to inhibitors, both for multiple kinases and oncogenic mutated kinases. To rationalize the physical 
determinants of these selectivity profiles, we will employ cheminformatics tools to develop 2D QSAR models. 
Ultimately, this study will provide a tool to rationally design drugs to improve selectivity and minimize on-target 
toxicity.  
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